Latest news

Two mice studies indicate that an increase in a protein involved in immune response may be behind the reduced ability of older brains to create new neurons, and that exercise produces a protein that helps protect against damage caused by illness, injury, surgery and pollutants.

In the first mouse study, when young and old mice were conjoined, allowing blood to flow between the two, the young mice showed a decrease in

  • High daily doses of B-vitamins significantly slowed cognitive decline and brain atrophy in those with MCI, especially if they had high levels of homocysteine.

In a small study, 266 older adults with mild cognitive impairment (aged 70+) received a daily dose of 0.8 mg folic acid, 0.5 mg vitamin B12 and 20 mg vitamin B6 or a placebo for two years.

  • Chimpanzee brains don’t shrink with age as humans’ do. It may be that cognitive impairment and even dementia are our lot because we work our brains too hard for too long.

Comparison of 99 chimpanzee brains ranging from 10-51 years of age with 87 human brains ranging from 22-88 years of age has revealed that, unlike the humans, chimpanzee brains showed no sign of shrinkage with age. But the answer may be simple: we live much longer.

  • A new study shows that, among the very old, it’s harder to distinguish between normal brain atrophy and cognitive impairment and that indicative of Alzheimer’s.

A study involving 105 people with Alzheimer's disease and 125 healthy older adults has compared cognitive function and brain shrinkage in those aged 60-75 and those aged 80+.

A recent study finds that cognitive decline is greater in older adults who have a high salt intake —but only if they’re not physically active. Another finds that older rats who exercise are protected from memory loss caused by bacterial infection.

A three-year study following 1,262 healthy older Canadians (aged 67-84) has found that, among those who exercised little, those who had high-salt diets showed significantly greater cognitive decline.

A small study suggests that middle-aged couples are more likely to be effective than older couples in helping fill in each other’s memory gaps, but effective collaboration also depends on conversational style.

In my book on remembering what you’re doing and what you intend to do, I briefly discuss the popular strategy of asking someone to remind you (basically, whether it’s an effective strategy depends on several factors, of which the most important is the reliability of the person doing the remindin

Effective patterns of neural activity replayed via an artificial device inserted in the hippocampus restores lost learning capability and even improves learning in normal rats.

In the experiment, rats learned which lever to press to receive water, where the correct lever depended on which lever they had pressed previously (the levers were retractable; there was a variable delay between the first and second presentation of the levers).

A mouse study finds that gamma waves in the hippocampus, critically involved in learning, grow stronger as mice run faster.

I’ve always felt that better thinking was associated with my brain working ‘in a higher gear’ — literally working at a faster rhythm.

Learning two tasks or subjects one after another typically leads to poorer remembering of the first. A new study indicates the cause and suggests a remedy.

Trying to learn two different things one after another is challenging. Almost always some of the information from the first topic or task gets lost. Why does this happen?

A study has successfully countered reduced activity in the prefrontal cortex seen in older monkeys. Clinical trials are now investigating whether the drug can improve working memory in older humans.

A study comparing activity in the dorsolateral prefrontal cortex in young, middle-aged and aged macaque m

A study indicates that difficulty in seeing the whole, vs elements of the whole, is associated with impairment in perceptual grouping, and this is more common with age.

A standard test of how we perceive local vs global features of visual objects uses Navon figures — large letters made up of smaller ones (see below for an example).

Increasing evidence shows that perception is nowhere near the simple bottom-up process we once thought. Two recent perception studies add to the evidence.

Previous research has found practice improves your ability at distinguishing visual images that vary along one dimension, and that this learning is specific to the visual images you train on and quite durable.

Two studies reaffirm the value of retrieval practice, and suggest how often you need to retrieve each item.

In the first study, undergraduates studied English-Lithuanian word pairs, which were displayed on a screen one by one for 10 seconds.

New mouse research helps explain why the spacing effect occurs.

I’ve spoken often about the spacing effect — that it’s better to spread out your learning than have it all massed in a block.

New research suggests that successful retrieval depends not only on retrieval cues, but also on your preceding brain state.

What governs whether or not you’ll retrieve a memory? I’ve talked about the importance of retrieval cues, of the match between the cue and the memory code you’re trying to retrieve, of the strength of the connections leading to the code. But these all have to do with the memory code.

Images designed to arouse strong negative emotion can improve your memory for information you’re learning, if presented immediately after you’ve been tested on it.

In a recent study, 40 undergraduate students learned ten lists of ten pairs of Swahili-English words, with tests after each set of ten. On these tests, each correct answer was followed by an image, either a neutral one or one designed to arouse negative emotions, or by a blank screen.

A new study shows how stress only impacts math performance in those with both higher working memory capacity and math anxiety, while another shows that whether or not pressure impacts your performance depends on the nature of the pressure and the type of task.

Recent studies show why a low-fat, low-carb diet, and caffeinated coffee, help protect against developing Alzheimer’s disease.

Dietary changes affect levels of biomarkers associated with Alzheimer's

Recent studies add to the evidence that sleep apnea and even mild brain injury increase the risk of developing dementia.

Sleep apnea linked to later dementia

A study involving 298 older women with sleep problems found that those who had disordered breathing (such as sleep apnea) were significantly more likely to develop dementia or mild cognitive impairment.

Several recent reports point to the need for GPs to be better informed about the initial symptoms of dementia and mild cognitive impairment.

Functional impairment good indicator of mild cognitive impairment

Pages

Research topics