Reviving a failing sense of smell through training

January, 2012

A rat study reveals how training can improve or impair smell perception.

The olfactory bulb is in the oldest part of our brain. It connects directly to the amygdala (our ‘emotion center’) and our prefrontal cortex, giving smells a more direct pathway to memory than our other senses. But the olfactory bulb is only part of the system processing smells. It projects to several other regions, all of which are together called the primary olfactory cortex, and of which the most prominent member is the piriform cortex. More recently, however, it has been suggested that it would be more useful to regard the olfactory bulb as the primary olfactory cortex (primary in the sense that it is first), while the piriform cortex should be regarded as association cortex — meaning that it integrates sensory information with ‘higher-order’ (cognitive, contextual, and behavioral) information.

Testing this hypothesis, a new rat study has found that, when rats were given training to distinguish various odors, each smell produced a different pattern of electrical activity in the olfactory bulb. However, only those smells that the rat could distinguish from others were reflected in distinct patterns of brain activity in the anterior piriform cortex, while smells that the rat couldn’t differentiate produced identical brain activity patterns there. Interestingly, the smells that the rats could easily distinguish were ones in which one of the ten components in the target odor had been replaced with a new component. The smells they found difficult to distinguish were those in which a component had simply been deleted.

When a new group of rats was given additional training (8 days vs the 2 days given the original group), they eventually learned to discriminate between the odors the first animals couldn’t distinguish, and this was reflected in distinct patterns of brain activity in the anterior piriform cortex. When a third group were taught to ignore the difference between odors the first rats could readily distinguish, they became unable to tell the odors apart, and similar patterns of brain activity were produced in the piriform cortex.

The effects of training were also quite stable — they were still evident after two weeks.

These findings support the idea of the piriform cortex as association cortex. It is here that experience modified neuronal activity. In the olfactory bulb, where all the various odors were reflected in different patterns of activity right from the beginning (meaning that this part of the brain could discriminate between odors that the rat itself couldn’t distinguish), training made no difference to the patterns of activity.

Having said that, it should be noted that this is not entirely consistent with previous research. Several studies have found that odor training produces changes in the representations in the olfactory bulb. The difference may lie in the method of neural recording.

How far does this generalize to the human brain? Human studies have suggested that odors are represented in the posterior piriform cortex rather than the anterior piriform cortex. They have also suggested that the anterior piriform cortex is involved in expectations relating to the smells, rather than representing the smells themselves. Whether these differences reflect species differences, task differences, or methodological differences, remains to be seen.

But whether or not the same exact regions are involved, there are practical implications we can consider. The findings do suggest that one road to olfactory impairment is through neglect — if you learn to ignore differences between smells, you will become increasingly less able to do so. An impaired sense of smell has been found in Alzheimer’s disease, Parkinson's disease, schizophrenia, and even normal aging. While some of that may well reflect impairment earlier in the perception process, some of it may reflect the consequences of neglect. The burning question is, then, would it be possible to restore smell function through odor training?

I’d really like to see this study replicated with old rats.

Reference: 

Related News

There have been mixed findings about the benefits of DHA (an omega-3 fatty acid), but in a study involving 485 older adults (55+) with age-related cognitive impairment, those randomly assigned to take DHA for six months improved the score on a visuospatial learning and episodic memory test.

A study involving young (average age 22) and older adults (average age 77) showed participants pictures of overlapping faces and places (houses and buildings) and asked them to identify the gender of the person.

Do retired people tend to perform more poorly on cognitive tests than working people because you’re more likely to retire if your mental skills are starting to decline, or because retirement dulls the brain?

Carriers of the so-called ‘Alzheimer’s gene’ (apoE4) comprise 65% of all Alzheimer's cases. A new study helps us understand why that’s true.

A Chinese study involving 153 older men (55+; average age 72), of whom 47 had mild cognitive impairment, has found that 10 of those in the

A seven-year study involving 271 Finns aged 65-79 has revealed that increases in the level of

Data from 21,123 people, surveyed between 1978 and 1985 when in their 50s and tracked for dementia from 1994 to 2008, has revealed that those who smoked more than two packs per day in middle age had more than twice the risk of developing dementia, both Alzheimer's and

I love cognitive studies on bees. The whole notion that those teeny-tiny brains are capable of the navigation and communication feats bees demonstrate is so wonderful. Now a new study finds that, just like us, aging bees find it hard to remember the location of a new home.

A long-running study involving 299 older adults (average age 78) has found that those who walked at least 72 blocks during a week of recorded activity (around six to nine miles) had greater gray matter volume nine years later.

Beginning in 1971, healthy older adults in Gothenburg, Sweden, have been participating in a longitudinal study of their cognitive health. The first H70 study started in 1971 with 381 residents of Gothenburg who were 70 years old; a new one began in 2000 with 551 residents and is still ongoing.

Pages

Subscribe to Latest newsSubscribe to Latest newsSubscribe to Latest health newsSubscribe to Latest news