More support for value of cognitive activities in fighting cognitive decline in old age

September, 2012

Two recent conference presentations add to the evidence for the benefits of ‘brain training’, and of mental stimulation, for holding back age-related cognitive decline.

My recent reports on brain training for older adults (see, e.g., Review of working memory training programs finds no broader benefit; Cognitive training shown to help healthy older adults; Video game training benefits cognition in some older adults) converge on the idea that cognitive training can indeed be beneficial for older adults’ cognition, but there’s little wider transfer beyond the skills being practiced. That in itself can be valuable, but it does reinforce the idea that the best cognitive training covers a number of different domains or skill-sets. A new study adds little to this evidence, but does perhaps emphasize the importance of persistence and regularity in training.

The study involved 59 older adults (average age 84), of whom 33 used a brain fitness program 5 days a week for 30 minutes a day for at least 8 weeks, while the other group of 26 were put on a waiting list for the program. After two months, both groups were given access to the program, and both were encouraged to use it as much or as little as they wanted. Cognitive testing occurred before the program started, at two months, and at six months.

The first group to use the program used the program on average for 80 sessions, compared to an average 44 sessions for the wait-list group.

The higher use group showed significantly higher cognitive scores (delayed memory test; Boston Naming test) at both two and six months, while the lower (and later) use group showed improvement at the end of the six month period, but not as much as the higher use group.

I’m afraid I don’t have any more details (some details of the training program would be nice) because it was a conference presentation, so I only have access to the press release and the abstract. Because we don’t know exactly what the training entailed, we don’t know the extent to which it practiced the same skills that were tested. But we may at least add it to the evidence that you can improve cognitive skills by regular training, and that the length/amount of training (and perhaps regularity, since the average number of sessions for the wait-list group implies an average engagement of some three times a week, while the high-use group seem to have maintained their five-times-a-week habit) matters.

Another interesting presentation at the conference was an investigation into mental stimulating activities and brain activity in older adults.

In this study, 151 older adults (average age 82) from the Rush Memory and Aging Project answered questions about present and past cognitive activities, before undergoing brain scans. The questions concerned how frequently they engaged in mentally stimulating activities (such as reading books, writing letters, visiting a library, playing games) and the availability of cognitive resources (such as books, dictionaries, encyclopedias) in their home, during their lifetime (specifically, at ages 6, 12, 18, 40, and now).

Higher levels of cognitive activity and cognitive resources were also associated with better cognitive performance. Moreover, after controlling for education and total brain size, it was found that frequent cognitive activity in late life was associated with greater functional connectivity between the posterior cingulate cortex and several other regions (right orbital and middle frontal gyrus, left inferior frontal gyrus, hippocampus, right cerebellum, left inferior parietal cortex). More cognitive resources throughout life was associated with greater functional connectivity between the posterior cingulate cortex and several other regions (left superior occipital gyrus, left precuneus, left cuneus, right anterior cingulate, right middle frontal gyrus, and left inferior frontal gyrus).

Previous research has implicated a decline in connectivity with the posterior cingulate cortex in mild cognitive impairment and Alzheimer’s disease.

Cognitive activity earlier in life was not associated with differences in connectivity.

The findings provide further support for the idea “Use it or lose it!”, and suggests that mental activity protects against cognitive decline by maintaining functional connectivity in important neural networks.

Reference: 

Miller, K.J. et al. 2012. Memory Improves With Extended Use of Computerized Brain Fitness Program Among Older Adults. Presented August 3 at the 2012 convention of the American Psychological Association.

Han, S.D. et al. 2012. Cognitive Activity and Resources Are Associated With PCC Functional Connectivity in Older Adults. Presented August 3 at the 2012 convention of the American Psychological Association.

Related News

A training program designed to help older adults with

Comparison of young adults (mean age 24.5) and older adults (mean age 69.1) in a visual memory test involving multitasking has pinpointed the greater problems older adults have with multitasking.

A study involving 125 younger (average age 19) and older (average age 69) adults has revealed that while younger adults showed better explicit learning, older adults were better at implicit learning. Implicit memory is our unconscious memory, which influences behavior without our awareness.

A two-year study involving 53 older adults (60+) has found that those with a mother who had Alzheimer's disease had significantly more brain atrophy than those with a father or no parent with Alzheimer's disease.

Data from the Baltimore Longitudinal Study on Aging, begun in 1958, has revealed that seniors with hearing loss are significantly more likely to develop dementia than those who retain their hearing.

Shrinking of the

A new molecular compound derived from curcumin (found in turmeric) holds promise for treating brain damage caused by stroke. Turmeric has a long history of use in Ayurvedic and Chinese traditional medicine.

The new label of ‘metabolic syndrome’ applies to those having three or more of the following risk factors: high blood pressure, excess belly fat, higher than normal triglycerides, high blood sugar and low high-density lipoprotein (HDL) cholesterol (the "good" cholesterol).

Lesions of the brain microvessels include white-matter hyperintensities and the much less common silent infarcts leading to loss of white-matter tissue.

Another study has come out proclaiming the cognitive benefits of walking for older adults.

Pages

Subscribe to Latest newsSubscribe to Latest newsSubscribe to Latest health newsSubscribe to Latest news