Regular cocoa drinking helps those with MCI

September, 2012

Daily consumption of a high level of cocoa was found to improve cognitive scores, insulin resistance and blood pressure, in older adults with mild cognitive impairment.

Back in 2009, I reported briefly on a large Norwegian study that found that older adults who consumed chocolate, wine, and tea performed significantly better on cognitive tests. The association was assumed to be linked to the flavanols in these products. A new study confirms this finding, and extends it to older adults with mild cognitive impairment.

The study involved 90 older adults with MCI, who consumed either 990 milligrams, 520 mg, or 45 mg of a dairy-based cocoa drink daily for eight weeks. Their diet was restricted to eliminate other sources of flavanols (such as tea, red wine, apples and grapes).

Cognitive assessment at the end of this period revealed that, although scores on the MMSE were similar across all groups, those consuming higher levels of flavanol cocoa took significantly less time to complete Trail Making Tests A and B, and scored significantly higher on the verbal fluency test. Insulin resistance and blood pressure was also lower.

Those with the highest levels of flavanols did better than those on intermediate levels on the cognitive tests. Both did better than those on the lowest levels.

Changes in insulin resistance explained part, but not all, of the cognitive improvement.

One caveat: the group were generally in good health without known cardiovascular disease — thus, not completely representative of all those with MCI.

 

Reference: 

Related News

The first detailed characterization of the molecular structures of amyloid-beta fibrils that develop in the brains of those with Alzheimer's disease suggests that different molecular structures of amyloid-beta fibrils may distinguish the brains of Alzheimer's patients with different clinical his

A study involving mice lacking a master clock gene called Bmal1 has found that as the mice aged, their brains showed patterns of damage similar to those seen in Alzheimer's disease and other neurodegenerative disorders. Many of the injuries seemed to be caused by free radicals.

A new study involving 96 older adults initially free of dementia at the time of enrollment, of whom 12 subsequently developed mild Alzheimer’s, has clarified three fundamental issues about Alzheimer's: where it starts, why it starts there, and how it spreads.

Analysis of 5715 cases from the National Alzheimer's Coordinating Center (NACC) database has found that nearly 80% of more than 4600 Alzheimer's disease patients showed some degree of vascular pathology, compared with 67% of the controls, and 66% in the Parkinson's group.

The jugular venous reflux (JVR) occurs when the pressure gradient reverses the direction of blood flow in the veins, causing blood to leak backwards into the brain.

The

Following on from the evidence that Alzheimer’s brains show higher levels of metals such as iron, copper, and zinc, a mouse study has found that amyloid plaques in Alzheimer’s-like brains with significant neurodegeneration have about 25% more copper than those with little neurodegeneration.

An Italian study has found that a significant percentage of Alzheimer’s patients suffer from Obstructive Sleep Apnea Syndrome. This respiratory disorder, which causes people to temporarily stop breathing during their sleep, affects cerebral blood flow, promoting cognitive decline.

Data from 70 older adults (average age 76) in the Baltimore Longitudinal Study of Aging has found that those who reported poorer sleep (shorter sleep duration and lower sleep quality) showed a greater buildup of amyloid-beta plaques.

A new discovery helps explain why the “Alzheimer’s gene” ApoE4 is such a risk factor.

Pages

Subscribe to Latest newsSubscribe to Latest newsSubscribe to Latest health newsSubscribe to Latest news