Limited benefit of physical activity for preventing cognitive decline

  • A large study of older adults (70+) found no cognitive benefit from a regular exercise program, compared to another social & mental intervention.
  • However, a subset of participants (those over 80, and those with poor physical function at the beginning of the study) did show improvement in executive function.
  • Participants in both programs showed no cognitive decline over the two-year period, suggesting both interventions were helpful.

A large, two-year study challenges the evidence that regular exercise helps prevent age-related cognitive decline.

The study involved 1,635 older adults (70-89) who were enrolled in the Lifestyle Interventions and Independence for Elders (LIFE) study. They were sedentary adults who were at risk for mobility disability but able to walk about a quarter mile. Participants had no significant cognitive impairment (as measured by the MMSE) at the beginning of the study. Around 90% (1476) made it to the end of the study, and were included in the analysis.

Half the participants were randomly assigned to a structured, moderate-intensity physical activity program that included walking, resistance training, and flexibility exercises, and the other half to a health education program of educational workshops and upper-extremity stretching.

In the physical activity condition, participants were expected to attend 2 center-based visits per week and perform home-based activity 3 to 4 times per week. The sessions progressed toward a goal of 30 minutes of walking at moderate intensity, 10 minutes of primarily lower-extremity strength training with ankle weights, and 10 minutes of balance training and large muscle group flexibility exercises.

The health education group attended weekly health education workshops during the first 26 weeks of the intervention and at least monthly sessions thereafter. Sessions lasted 60 to 90 minutes and consisted of interactive and didactic presentations, facilitator demonstrations, guest speakers, or field trips. Sessions included approximately 10 minutes of group discussion and interaction and 5 to 10 minutes of upper-extremity stretching and flexibility exercises.

Cognitive assessments were made at the beginning of the study and at 24 months, as well as a computerized assessment at either 18 or 30 months.

At the end of the study, there was no significant difference in cognitive score, or incidence of MCI or dementia, between the two groups. However, those in the exercise group who were 80 years or older ( 307) and those with poorer baseline physical performance ( 328) did show significantly better performance in executive function.

Executive function is not only a critical function in retaining the ability to live independently, research has also shown that it is the most sensitive cognitive domain to physical exercise.

Note also that there was no absolute control group — that is, people who received no intervention. Both groups showed remarkably stable cognitive scores over the two years, suggesting that both interventions were in fact effective in “holding the line”.

While this finding is disappointing and a little surprising, it is not entirely inconsistent with the research. Studies into the benefits of physical exercise for fighting age-related cognitive decline and dementia have produced mixed results. It does seem clear that the relationship is not a simple one, and what's needed is a better understanding of the complexities of the relationship. For example, elements of exercise that are critical, and the types of people (genes; health; previous social, physical, and cognitive attributes) that may benefit.

http://www.eurekalert.org/pub_releases/2015-08/tjnj-eop082115.php

Reference: 

Related News

A study involving mice lacking a master clock gene called Bmal1 has found that as the mice aged, their brains showed patterns of damage similar to those seen in Alzheimer's disease and other neurodegenerative disorders. Many of the injuries seemed to be caused by free radicals.

A new study involving 96 older adults initially free of dementia at the time of enrollment, of whom 12 subsequently developed mild Alzheimer’s, has clarified three fundamental issues about Alzheimer's: where it starts, why it starts there, and how it spreads.

Analysis of 5715 cases from the National Alzheimer's Coordinating Center (NACC) database has found that nearly 80% of more than 4600 Alzheimer's disease patients showed some degree of vascular pathology, compared with 67% of the controls, and 66% in the Parkinson's group.

The jugular venous reflux (JVR) occurs when the pressure gradient reverses the direction of blood flow in the veins, causing blood to leak backwards into the brain.

The

Following on from the evidence that Alzheimer’s brains show higher levels of metals such as iron, copper, and zinc, a mouse study has found that amyloid plaques in Alzheimer’s-like brains with significant neurodegeneration have about 25% more copper than those with little neurodegeneration.

An Italian study has found that a significant percentage of Alzheimer’s patients suffer from Obstructive Sleep Apnea Syndrome. This respiratory disorder, which causes people to temporarily stop breathing during their sleep, affects cerebral blood flow, promoting cognitive decline.

Data from 70 older adults (average age 76) in the Baltimore Longitudinal Study of Aging has found that those who reported poorer sleep (shorter sleep duration and lower sleep quality) showed a greater buildup of amyloid-beta plaques.

A new discovery helps explain why the “Alzheimer’s gene” ApoE4 is such a risk factor.

Analyses of cerebrospinal fluid from 15 patients with Alzheimer's disease, 20 patients with mild cognitive impairment, and 21 control subjects, plus brain tissue from

Pages

Subscribe to Latest newsSubscribe to Latest newsSubscribe to Latest health newsSubscribe to Latest news