Compound in celery, peppers reduces age-related memory deficits

November, 2010

One precursor of age-related cognitive impairment and dementia is inflammation. Research suggests why that might be, and explains why the plant nutrient luteolin can help fight memory impairment.

Inflammation in the brain appears to be a key contributor to age-related memory problems, and it may be that this has to do with the dysregulation of microglia that, previous research has shown, occurs with age. As these specialized support cells in the brain do normally when there’s an infection, with age microglia start to produce excessive cytokines, some of which result in the typical behaviors that accompany illness (sleepiness, appetite loss, cognitive deficits and depression).

Now new cell and mouse studies suggests that the flavenoid luteolin, known to have anti-inflammatory properties, apparently has these benefits because it acts directly on the microglial cells to reduce their production of inflammatory cytokines. It was found that although microglia exposed to a bacterial toxin produced inflammatory cytokines that killed neurons, if the microglia were first exposed to luteolin, the neurons lived. Exposing the neuron to luteolin had no effect.

Old mice fed a luteolin-supplemented diet for four weeks did better on a working memory test than old mice on an ordinary diet, and restored levels of inflammatory cytokines in their brains to that of younger mice.

Luteolin is found in many plants, including carrots, peppers, celery, olive oil, peppermint, rosemary and chamomile.

Reference: 

Related News

The first detailed characterization of the molecular structures of amyloid-beta fibrils that develop in the brains of those with Alzheimer's disease suggests that different molecular structures of amyloid-beta fibrils may distinguish the brains of Alzheimer's patients with different clinical his

A study involving mice lacking a master clock gene called Bmal1 has found that as the mice aged, their brains showed patterns of damage similar to those seen in Alzheimer's disease and other neurodegenerative disorders. Many of the injuries seemed to be caused by free radicals.

A new study involving 96 older adults initially free of dementia at the time of enrollment, of whom 12 subsequently developed mild Alzheimer’s, has clarified three fundamental issues about Alzheimer's: where it starts, why it starts there, and how it spreads.

Analysis of 5715 cases from the National Alzheimer's Coordinating Center (NACC) database has found that nearly 80% of more than 4600 Alzheimer's disease patients showed some degree of vascular pathology, compared with 67% of the controls, and 66% in the Parkinson's group.

The jugular venous reflux (JVR) occurs when the pressure gradient reverses the direction of blood flow in the veins, causing blood to leak backwards into the brain.

The

Following on from the evidence that Alzheimer’s brains show higher levels of metals such as iron, copper, and zinc, a mouse study has found that amyloid plaques in Alzheimer’s-like brains with significant neurodegeneration have about 25% more copper than those with little neurodegeneration.

An Italian study has found that a significant percentage of Alzheimer’s patients suffer from Obstructive Sleep Apnea Syndrome. This respiratory disorder, which causes people to temporarily stop breathing during their sleep, affects cerebral blood flow, promoting cognitive decline.

Data from 70 older adults (average age 76) in the Baltimore Longitudinal Study of Aging has found that those who reported poorer sleep (shorter sleep duration and lower sleep quality) showed a greater buildup of amyloid-beta plaques.

A new discovery helps explain why the “Alzheimer’s gene” ApoE4 is such a risk factor.

Pages

Subscribe to Latest newsSubscribe to Latest newsSubscribe to Latest health newsSubscribe to Latest news