Cognitive decline in old age related to poorer sleep

February, 2013
  • A new study confirms the role slow-wave sleep plays in consolidating memories, and reveals that one reason for older adults’ memory problems may be the quality of their sleep.

Recent research has suggested that sleep problems might be a risk factor in developing Alzheimer’s, and in mild cognitive impairment. A new study adds to this gathering evidence by connecting reduced slow-wave sleep in older adults to brain atrophy and poorer learning.

The study involved 18 healthy young adults (mostly in their 20s) and 15 healthy older adults (mostly in their 70s). Participants learned 120 word- nonsense word pairs and were tested for recognition before going to bed. Their brain activity was recorded while they slept. Brain activity was also measured in the morning, when they were tested again on the word pairs.

As has been found previously, older adults showed markedly less slow-wave activity (both over the whole brain and specifically in the prefrontal cortex) than the younger adults. Again, as in previous studies, the biggest difference between young and older adults in terms of gray matter volume was found in the medial prefrontal cortex (mPFC). Moreover, significant differences were also found in the insula and posterior cingulate cortex. These regions, like the mPFC, have also been associated with the generation of slow waves.

When mPFC volume was taken into account, age no longer significantly predicted the extent of the decline in slow-wave activity — in other words, the decline in slow-wave activity appears to be due to the brain atrophy in the medial prefrontal cortex. Atrophy in other regions of the brain (precuneus, hippocampus, temporal lobe) was not associated with the decline in slow-wave activity when age was considered.

Older adults did significantly worse on the delayed recognition test than young adults. Performance on the immediate test did not predict performance on the delayed test. Moreover, the highest performers on the immediate test among the older adults performed at the same level as the lowest young adult performers — nevertheless, these older adults did worse the following day.

Slow-wave activity during sleep was significantly associated with performance on the next day’s test. Moreover, when slow-wave activity was taken into account, neither age nor mPFC atrophy significantly predicted test performance.

In other words, age relates to shrinkage of the prefrontal cortex, this shrinkage relates to a decline in slow-wave activity during sleep, and this decline in slow-wave sleep relates to poorer cognitive performance.

The findings confirm the importance of slow-wave brainwaves for memory consolidation.

All of this suggests that poorer sleep quality contributes significantly to age-related cognitive decline, and that efforts should be made to improve quality of sleep rather than just assuming lighter, more disturbed sleep is ‘natural’ in old age!

Reference: 

Related News

Preliminary findings from a small study show that older adults (68-91), after learning to use Facebook, performed about 25% better on tasks designed to measure their ability to continuously monitor and to quickly add or delete the contents of their

The issue of the effect of menopause on women’s cognition, and whether hormone therapy helps older women fight cognitive decline and dementia, has been a murky one. Increasing evidence suggests that the timing and type of therapy is critical.

A new study adds more support to the idea that the increasing difficulty in learning new information and skills that most of us experience as we age is not down to any difficulty in acquiring new information, but rests on the interference from all the old information.

I’ve written before about the gathering evidence that sensory impairment, visual impairment and hearing loss in particular, is a risk factor for age-related cognitive decline and dementia.

Here’s an encouraging study for all those who think that, because of age or physical damage, they must resign themselves to whatever cognitive impairment or decline they have suffered.

Providing some support for the finding I recently reported — that problems with semantic knowledge in those with mild cognitive impairment (

Previous research has pointed to an association between not having teeth and a higher risk of cognitive decline and dementia. One reason might have to do with inflammation — inflammation is a well-established risk factor, and at least one study has linked gum disease to a higher dementia risk.

Sad to say, another large study has given the thumbs down to ginkgo biloba preventing Alzheimer’s disease.

New research suggests that reliance on the standard test Alzheimer's Disease Assessment Scale—Cognitive Behavior Section (ADAS-Cog) to measure cognitive changes in Alzheimer’s patients is a bad idea. The test is the most widely used measure of cognitive performance in clinical trials.

A small study shows how those on the road to Alzheimer’s show early semantic problems long before memory problems arise, and that such problems can affect daily life.

Pages

Subscribe to Latest newsSubscribe to Latest newsSubscribe to Latest health newsSubscribe to Latest news