Are sleep problems a key factor in Alzheimer’s?

October, 2012

A mouse study shows that sleep deprivation and aggregation of amyloid beta go hand in hand, and may be key players on the road to Alzheimer’s.

I reported a few months ago on some evidence of a link between disturbed sleep and the development of Alzheimer’s. Now a mouse study adds to this evidence.

The mouse study follows on from an earlier study showing that brain levels of amyloid beta naturally rise when healthy young mice are awake and drop after they go to sleep, and that sleep deprivation disrupted this cycle and accelerated the development of amyloid plaques. This natural rhythm was confirmed in humans.

In the new study, it was found that this circadian rhythm showed the first signs of disruption as soon as Alzheimer’s plaques began forming in the mice’s brains. When the genetically engineered mice were given a vaccine against amyloid beta, the mice didn’t develop plaques in old age, the natural fluctuations in amyloid beta levels continued, and sleep patterns remained normal.

Research with humans in now underway to see whether patients with early markers of Alzheimer’s show sleep problems, and what the nature of these problems is.

Just to make it clear: the point is not so much that Alzheimer’s patients are more likely to have sleep problems, but that the sleep problems may in fact be part of the cause of Alzheimer’s disease development. The big question, of course, is whether you can prevent its development by attacking the dysfunction in circadian rhythm. (See more on this debate at Biomed)

Reference: 

Related News

Following on from research showing that long-term meditation is associated with gray matter increases across the brain, an imaging study involving 27 long-term meditators (average age 52) and 27 controls (matched by age and sex) has revealed pronounced differences in white-matter connectivity be

Another study showing the value of exercise for preserving your mental faculties in old age.

It wasn’t so long ago we believed that only young brains could make neurons, that once a brain was fully matured all it could do was increase its connections. Then we found out adult brains could make new neurons too (but only in a couple of regions, albeit critical ones).

The brain tends to shrink with age, with different regions being more affected than others. Atrophy of the

A number of studies have demonstrated the cognitive benefits of music training for children. Now research is beginning to explore just how long those benefits last.

As we get older, when we suffer memory problems, we often laughingly talk about our brain being ‘full up’, with no room for more information. A new study suggests that in some sense (but not the direct one!) that’s true.

I commonly refer to ApoE4 as the ‘Alzheimer’s gene’, because it is the main genetic risk factor, tripling the risk for getting Alzheimer's. But it is not the only risky gene.

For the first time in 27 years, clinical diagnostic criteria for Alzheimer's disease dementia have been revised, and research guidelines updated. They mark a major change in how experts think about and study Alzheimer's disease.

A long-term study of older adults with similar levels of education has found that those with the thinnest

Growing evidence has pointed to the benefits of social and mental stimulation in preventing dementia, but until now no one has looked at the role of physical environment.

Pages

Subscribe to Latest newsSubscribe to Latest newsSubscribe to Latest health newsSubscribe to Latest news